Eigenmodes and Basis Functions for Pitch-Angle Diffusion with a Partially Filled Loss Cone

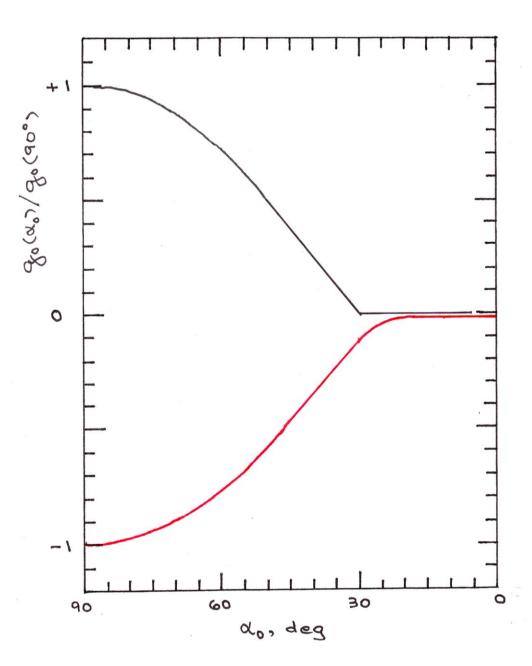
Michael Schulz
Aerospace Corporation Retiree
Lockheed Martin Retiree
1037 Twin Oaks Court
Redwood City, CA 94061 (U.S.A.)

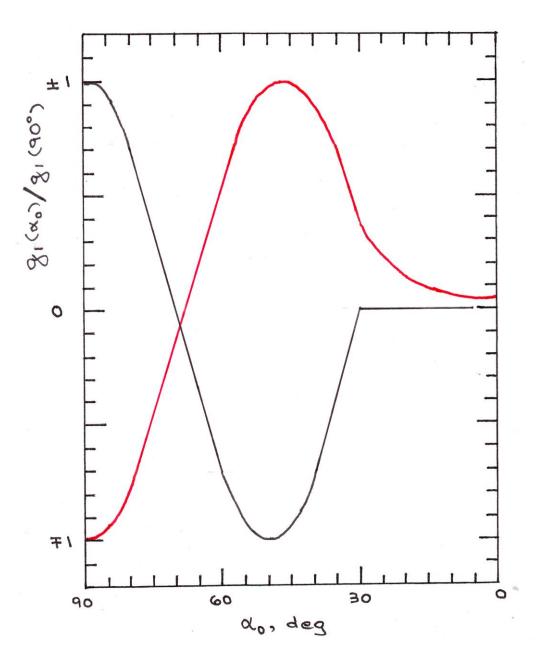
Pitch-Angle Diffusion Equation

$$\frac{d}{dz} \left[D_{zz} \frac{dg_n}{dz} \right] + \lambda_n g_n$$

$$= \begin{cases} 0, & z < z_c \\ (\Omega_2/\pi)(1-\eta)g_n, & z > z_c \end{cases}$$

Definitions


$$y = \sin \alpha_0$$


$$z = Z(y) = \int_y^1 y' T(y') dy'$$

$$\approx 0.6901(1 - y^2) - 0.2326(1 - y^{11/4})$$

$$T(y) = (v/4La)(2\pi/\Omega_2)$$

$$\approx 1.3802 - 0.6397y^{3/4}$$

Solutions for Constant D_{zz}

$$g_n(z) \propto \cos[(\lambda_n/D_{zz})^{1/2}z], z < z_c$$

$$g_n(z) \propto \cosh[k_n(z-z_0)], \quad z>z_c$$

$$z_0 = Z(0) = 16/35$$

$$k_n^2 = \frac{(1-\eta)\langle\Omega_2\rangle}{\pi D_{zz}} - \frac{\lambda_n}{D_{zz}}$$

$$k_n \tanh[k_n(z_0 - z_c)]$$

$$= \left(\frac{\lambda_n}{D_{zz}}\right)^{1/2} \tan\left[\left(\frac{\lambda_n}{D_{zz}}\right)^{1/2} z_c\right]$$

$$(\lambda_n/D_{zz})^{1/2} =$$

$$(1/z_c) \tan^{-1} \{ (\lambda_n/D_{zz})^{-1/2} k_n \tanh[k_n(z_0 - z_c)] \}$$

Table 4. Directional flux ratios for lowest eigenmode ($\alpha_c = 5^{\circ}$).

πD_{zz}	flux ratio:	flux ratio:
$(1-\eta)\langle\Omega_2\rangle$	$\alpha_0 = 0 \text{ vs } \alpha_0 = 90^{\circ}$	$\alpha_0 = 0 \text{ vs } \alpha_0 = \alpha_c$
10 ⁻⁶	0.000048655	0.014045975
10^{-5}	0.004748619	0.399582996
10 ⁻⁴	0.064037320	0.888624184
10^{-3}	0.442028147	0.987903180
10^{-2}	0.897446030	0.998784268
10^{-1}	0.988884150	0.999878399
10^{0}	0.998879136	0.999987839

Table 1. Solutions of (7b) for various normalized diffusion coefficients ($\alpha_c = 5^{\circ}$).

	$\frac{\lambda_0}{D_{zz}} = \frac{\text{electron loss}}{\text{diffusion co}}$	$\frac{\text{numerical result}}{\text{for } k_0}$	$\frac{\pi D_{zz}}{(1-\eta)\langle\Omega_2\rangle}$
$\pi/2z_{\rm c})^2$	$12.04976577 = (\pi/2)$	∞	0
	11.99667930	999.9940016	10^{-6}
	11.86812502	316.2090003	10^{-5}
	10.96859721	99.94514197	10^{-4}
	5.983447552	31.52802804	10^{-3}
	1.008219505	9.949461317	10^{-2}
	0.107593176	3.145219678	10^{-1}
	0.010831026	0.994569743	10^0
	0.010831026	0.994569743	10 ^v

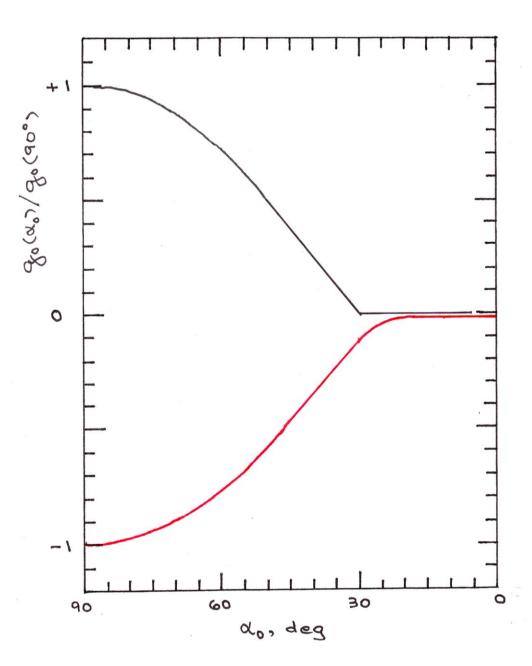


Table 2. Solutions of (7b) for various normalized diffusion coefficients ($\alpha_c = 5^{\circ}$).

$\frac{\pi D_{zz}}{(1-\eta)\langle\Omega_2\rangle}$	$\frac{\text{numerical result}}{\text{for } k_1}$	$\frac{\lambda_1}{D_{zz}} = \frac{\text{electron loss rate}}{\text{diffusion coeff}}$
0	∞	$108.4478919 = (3\pi/2z_c)^2$
10^{-6}	999.9460135	107.9701060
10^{-5}	316.0588351	106.8127568
10^{-4}	99.50493049	98.76880927
10^{-3}	30.57164174	65.37472138
0.002	21.04224439	57.22395114
0.005	12.19058992	51.38951740
0.010	7.120187025	49.30293673
0.020	1.327525081	48.23767716
$(z_c/\pi)^2$	0.000000000	48.19906305

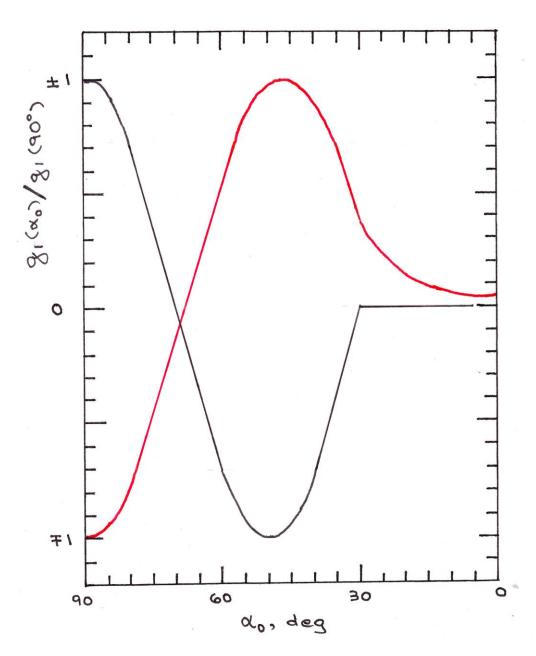
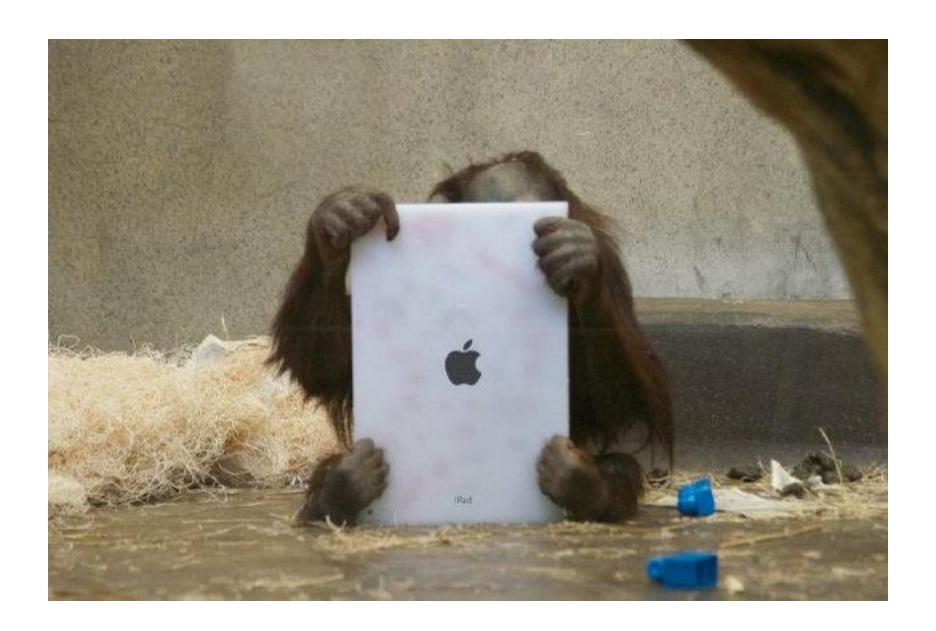



Table 3. Solutions of (7b) for various normalized diffusion coefficients ($\alpha_c = 5^{\circ}$).

$\frac{\pi D_{zz}}{(1-\eta)\langle\Omega_2\rangle}$	$\frac{\text{numerical result}}{\text{for } k_2}$	$\frac{\lambda_2}{D_{zz}} = \frac{\text{electron loss rate}}{\text{diffusion coeff}}$
0	∞	$301.2441440 = (5\pi/2z_c)^2$
10^{-6}	999.8500303	299.9169187
10^{-5}	315.7582936	296.7000531
10^{-4}	98.61727534	274.6330043
10^{-3}	28.11979514	209.2771213
0.002	17.34092632	199.2922744
0.005	2.655051431	192.9507019
$(z_c/2\pi)^2$	0.000000000	192.7962522

Empty Loss Cone (Weak Pitch-Angle Diffusion)

$$\frac{\mathrm{d}}{\mathrm{d}z} \left[D_{zz} \frac{\mathrm{d}g_n}{\mathrm{d}z} \right] + \lambda_n g_n = 0$$

$$y \equiv \sin \alpha_0$$

$$z = Z(y) = \int_{y}^{1} y' T(y') dy'$$

$$\approx 0.6901(1 - y^{2}) - 0.2326(1 - y^{11/4})$$

Expansion in Basis Functions

$$g_n(z) \approx \sum_{m} \hat{g}_m(z) U_{mn}$$

$$\hat{g}_{n}(z) = (2\theta_{n}/\xi_{vn})^{1/2} \left[J_{v}'(\xi_{vn}) \right]^{-1} J_{v}(\theta_{n})$$

$$\times D_{zz}^{-1/4} \left[\int_{0}^{z_{c}} D_{zz}^{-1/2} dz \right]^{-1/2}$$

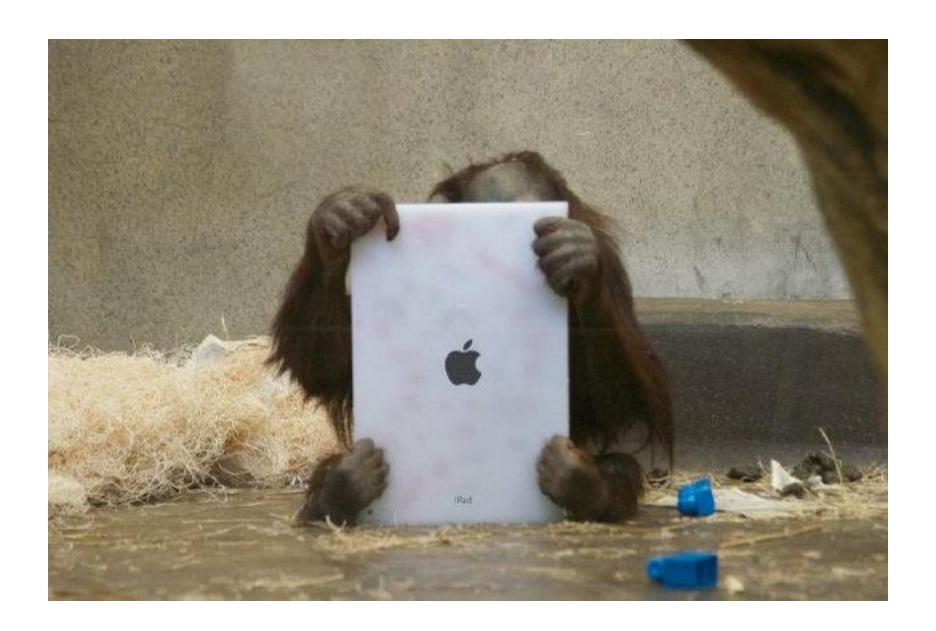
$$\theta_{n} = \zeta_{\nu n} \left[\int_{0}^{z} D_{z'z'}^{-1/2} dz' \right]^{-1/2} + \left[\int_{0}^{z_{c}} D_{z'z'}^{-1/2} dz' \right]^{-1/2}$$

$$J_{\nu}(\xi_{\nu n}) = 0 \qquad (n = 0, 1, 2, ...)$$

$$\nu = (\sigma - 1)/(2 - \sigma)$$

$$\sigma = \lim_{z \to 0} (d \ln D_{zz} / d \ln z)$$

 $\zeta_{vn} = n\pi + (2v + 3)(\pi/4)$


$$g_n(z) \approx \sum_{m} \hat{g}_m(z) U_{mn}$$

$$\Lambda_{nm} = \int_0^{z_c} (\mathrm{d}\hat{g}_n / \mathrm{d}z) D_{zz} (\mathrm{d}\hat{g}_m / \mathrm{d}z) \mathrm{d}z$$

$$\lambda_n \approx \Lambda_{nn} - \sum_{k \neq n} \frac{\Lambda_{nk} \Lambda_{kn}}{\Lambda_{kk} - \Lambda_{nn}}$$

$$\frac{U_{kn}}{U_{nn}} \approx \frac{1}{\Lambda_{nn} - \Lambda_{kk}} \left[\Lambda_{kn} + \sum_{j \neq k,n} \frac{\Lambda_{kj} \Lambda_{jn}}{\Lambda_{nn} - \Lambda_{jj}} \right]$$

$$U_{nn} \approx \left[1 + \sum_{k \neq n} (U_{kn}/U_{nn})^2\right]^{-1/2}$$

