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« Goals here

- The U.S. National Science Foundation’s Geospace Environment Modeling
(GEM) has identified for detailed case study five magnetic storms that
occurred during the second half of the Combined Release and Radiation
Effects Satellite (CRRES) mission in the year 1991.

- Show the responses of relativistic radiation belt electrons to these storms
by comparing the time-dependent 3-D Versatile Electron Radiation Belt
(VERB) simulations with the CRRES MEA 1 MeV electron observations

- Investigate the relative roles of competing effects of the previously
proposed scattering mechanisms at different storm phases, as well as
examine the extent to which the simulation efficiently represents the
observation.
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- Recently developed time-dependent

[see Shprits et al., 2008; Subbotin and Shprits, 2009; Kim et al., 2011
for more details]

. Simulation Methodology
- Radial diffusion by ULF electromagnetic fluctuations
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- Outside the plasmapause, pitch-angle scattering and local acceleration
0)Y including mixed diffusion

- Inside the plasmapause, pitch-angle diffusion by

- In response to the Kp variation

- (L*=6.6), taken from the CRRES MEA
observations of 1 MeV electron fluxes
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May Storm,1991
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Location of

Event Mechanism Inner edge | Outer edge | outer belt | <RMSE/obs,..,>
flux peak
Radial 0.96 0.56 0.96 28.6
+ Pitch-angle (Hiss) 0.88 0.75 0.96 22.5
Exltzgéle Fdeg(‘jg\%ry + Pitch-angle (Chorus) | 0.96 0.52 0.96 28.5
+ Energy (Chorus) 0.96 0.78 0.82 40.6
+ Mixed (Chorus) 0.88 0.53 0.96 25.9
Radial 0.46 0.48 23.2
+ Pitch-angle (Hiss) 0.48 0.69 18.9
Supi?gtgrl;/lnaiﬂ;rval + Pitch-angle (Chorus) De?ilrc])(te 4a 0.47 0.64 18.4
+ Energy (Chorus) 0.54 0.75 19.1
+ Mixed (Chorus) 0.51 0.74 18.1
Radial 0.68 0.95 43.7
+ Pitch-angle (Hiss) 0.44 0.60 31.9
Blags?cllsl\t/lo?ln + Pitch-angle (Chorus) Del?ilr(])(te 4a 0.61 0.95 18.4
+ Energy (Chorus) 0.00 0.00 31.7
+ Mixed (Chorus) 0.00 0.48 29.1
Radial 0.61 0.80 18.0
+ Pitch-angle (Hiss) 0.37 0.83 15.9
v jft’ii;/;‘;?;m + Pitch-angle (Chorus) | 1ot . [ 029 0.81 15.8
+ Energy (Chorus) 0.21 0.79 16.3
+ Mixed (Chorus) 0.14 0.79 15.6
Radial 0.43 0.73 7.7
+ Pitch-angle (Hiss) 0.39 0.84 8.6
B%ags?clgtglr)r/n + Pitch-angle (Chorus) deglr?éda (0K<]0) 0.90 14.7
+ Energy (Chorus) 0.83 0.67 8.1
+ Mixed (Chorus) 0.71 0.66 8.5




Summary and Conclusion

= The 3-D VERB simulations show that during storm
main phase and early recovery phase the estimated
plasmapause is located near the inner edge of the
outer belt so pitch-angle scattering by chorus waves
can be a dominant loss process in the outer belt.

= We have also confirmed the important role played by
mixed energy and pitch-angle diffusion by chorus
waves, which tends to reduce the fluxes enhanced by
local acceleration, resulting in the comparable level of
the computed and measured fluxes.




Ongoing Project (KASI & UCLA)
: Nowcasting of the Radiation Belt Environment
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VERB Simulations
(2) Challenge interval: February 1, 1991 to July 31, 1991

(a) Kp index and Lpp

(c) VERB simulation, E = 1 MeV,Ocﬂ ~90°
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Adopted Wave Parameters
for Chorus Day-Night outside the Plasmapause

: : : : MLT : Wave Wave
Wave intensity Density distribution spectral propagation
B, (pT) model of wave power properties angle
(%)
100.75+0.04)\(2,100.73+0.91Kp/3319_2)0.5
Chorus Kp < 2+ 35° Shfelley o5 w,/Q.=0.2 0,=0°
Day 100.75+0.04)\(2_102.5+0.18Kp/3319'2)0.5 etal. 6lee — 01 69 — 300
2+<Kp<6 [2001]
50-(2-100.73+0.91Kp/3319.2)05 Sheeley w,/Q.=0.3 0,c= 45°
Chorus Kp < 2+ 150  al o5 w,/Q.=0.1 6, = 0°
Night 50-(2-1025°01869/3319.2)05 e al. w./Q.=035 8 _=0°
g m (S] m
2+ <Kp<6 [2001] 5w/Q.=0.15  58=30°

The values of day and night chorus are based on works by
Horne et al., [2005], Glauert and Horne [2005], Li et al., [2007],
and Shprits et al., [2009].



Adopted Wave Parameters for Plasmaspheric Hiss,

Lightning-generated Whistlers, and VLF Transmitters
(17.1 kHz and 22.3 kHz) inside the Plasmapause

Plasmaspheric Lightning- VLF VLF
Type of Wave Hiss generated transmitter transmitter
Whistlers 17.1 kHz 22.3 kHz

Wave intensity

80-Kp/4 7-Kpl/4 0.8pT 0.8pT

B,, (pT) Y P P P
A 450

Density model Carpenter and Andersen [1992] at L>2

Starks et al. [2008] at L<2

MLT distribution of

60% 100% 2.4% each 2.4% each
wave power (%)
w,, = 21 - 550 w,, =21 - 4500 w,, =21 - 17100 w,, = 2m - 22300
Wave spectral ow = 21 - 300 ow = 21 - 2000 ow = 21 - 50 ow = 21 - 50
properties (rad/s) W, = 21 * 2000 W, = 21 * 6500 W, = 21 " 17200 W, = 21 * 22400
W, = 21 - 100 W, = 2T * 2500 W, = 2T 17000  w, = 21 - 22200
Wave propagation  6,,=0°, 66 = 20° 1o <O — o a — o A — o
angle 6 = 00,0, = 30° B,,= 45°, 50 = 22.5°, 6= 67.5°, 6,.= 22.5

Plasmaspheric hiss and lightning-generated whistler values are from Meredith et al. [2007],
and values for VLF transmitters are from Abel and Thorne [1998] and Starks et al. [2008].



Two points should be noticed about the adopted parameters.

(1) The wave power of the lightning-generated whistlers and
plasmaspheric hiss. In this study, we have distinguished these
two types of whistler mode waves simply by their frequencies
rather than by their generation mechanisms.

(2) A recent study by Starks et al. [2008] reported that the intensity
of VLF transmitters taken in a study of Abel and Thorne [1998]
might be overestimated by a factor of approximately 10. For VLF
transmitter waves in this study we used similar parameters as
Abel and Thorne [1998] but scaled them by a factor of 10.

Calculate the bounce-averaged diffusion coefficients by summing
the contributions from the |n| < 5 cyclotron harmonic resonances
In addition to the Landau resonance (n = 0).
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Bounce-averaged diffusion coefficients

(b) Lightning—generated
Whistlers
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 Pitch-angle scattering rates for the plasmaspheric hiss are
significantly higher than those for the other types of waves.



Boundary Conditions

Boundary Conditions Explanation
L*in = 1 =0 Losses to the atmosphere
L* a0 = 9.5 f=1() CRRES observations

Empty loss cone

.= 0 =
min = 0.3 f=0 In the weak diffusion regime

a... = 89.7° df/da =0 Flat pitch-angle distribution at 90°

max

E._.. =10 keV at L* f = constant Balance of convective sources and losses
min max

E .= 10 MeV at L* ., f=0 Absence of very high energy electrons

» Grid size : 31(L") x 101(pitch angle) x 101(energy)



Initial Condition

of the radial diffusion with Kp=1
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VERB Simulations
(1) Training interval: August 15, 1990 to October 15, 1990

g (a) Kp index and Lpp
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- The diffusion model predicts the instantaneous location of the upper boundary
of the slot region, the empty slot region, and the stable inner belts, all of which
show a good agreement with the CRRES observations.



August 26-30, 1990 October 9-15, 1990
(clear storm, preceded by (clear storm, Dst_;,,~-120 nT)
another; Dst_..~-100nT)
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VERB Simulations
(2) Challenge interval: February 1, 1991 to July 31, 1991

(a) Kp index and Lpp
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February 1, 1991 February 24, 1991
Dst .. ~-79nT * Non-storm electron injection

min

» Extended recovery phase
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407 4 430

Kp index Kp index

#emfsr/sikeV
#emfsr/sikeV

#emsr/sikeV
#emsr/sikeV

407 17 4 430 440
Day of Year in 1991 Day of Year in 1991

Feb. 11 Feb. 21 Mar. 03 Feb. 24 Mar. 6 Mar. 16




March 24, 1991 May 17, 1991

 Superstorm interval *Dst. ., ~-105nT
» “classic” storm
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